

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SEMESTER I EXAMINATION, 2016/2017 ACADEMIC SESSION

COURSE TITLE: ELECTROMAGNETIC FIELDS

COURSE CODE: EEE 313 .

EXAMINATION DATE: 5TH APRIL, 2017

COURSE LECTURER: DR R. O. Alli-Oke

HOD's SIGNATURE

TIME ALLOWED: 2½ HRS

INSTRUCTIONS:

- 1. ANSWER QUESTION 1 AND ANY OTHER TWO QUESTIONS (TOTAL OF 3 QUESTIONS)
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE **NOT** ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.
- 4. SEPARATION VECTOR ξ IS **ALWAYS** r-r' i.e. FIELD POINT SOURCE POINT.
- 5. COULOMB'S LAW: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{\xi^2} \hat{\xi}$ VACUUM PERMITIVITY $\epsilon_0: 8.854 \times 10^{-12} \ \mathrm{Fm^{-1}}$
- 6. COLOUMB'S CONSTANT $k_e = \frac{1}{4\pi\epsilon_0} = 8.988 \times 10^9 \text{ Nm}^2 \text{C}^{-2}$
- 7. USE THE FOLLOWING COORDINATE SYSTEM THROUGHOUT THE EXAM

- a) What is a vector field? (3 marks) State 3 coordinate systems for describing vector fields. (3 marks)
- b) The charges below shows particles with charges $q_1 = +2Q$, $q_2 = -2Q$, and $q_3 = -4Q$ each at a distance d from the origin. What is the net electric field at the origin? Hint: You may use separation vectors approach.

 Note that the origin is already specified. (8 marks)

Figure 1: Configuration of Discrete Charges

Figure 3: Thick Spherical Shell

c) The figure below (Fig. 2a) shows a non-conducting rod with uniformly distributed charge +Q. The rod forms a half-circle of radius R and produces an electric field of magnitude E_{arc} at its center of curvature P. If the arc is collapsed in a single point from P (see Fig 2b), by what factor is E_{arc} multiplied? You must use separation vectors approach. Hint: ratio of the electric field at P in Fig 2b to E_{arc} at P in Fig 2a. (8 marks)

Figure 2: Configuration of Uniformly Distributed Charges

- d) An electron travels with a velocity of 4.9×10^6 m/s in the *i*-direction through a point in space where the magnetic field is 0.111T in the *j*-direction. Force of the electron at this point is $F = (9.5 \times 10^{-14})i + (9.5 \times 10^{-14})k$ N. Determine the electric field at this point. *Hint: Use Lorentz force law* (7 marks)
- 2)
- a) State Gauss's law. (3 marks) State 3 symmetries that are easily applicable with Gauss law. (3 marks)
- b) Using Gauss's law, compute $|\vec{\mathbf{E}}|$ at the radial distance r from an infinitely long thin rod of with uniform charge density λ . Assume that the rod is aligned with the y-axis. (4 marks)
- An infinite line of charge produces a field of magnitude 4.5×10⁴ N/C at a radial distance of 2.0m. Determine the linear charge density. *Hint: Use the result obtained in (b).* (2 marks)